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A FAST ALGORITHM TO SOLVE VISCOUS TWO-PHASE FLOW

IN AN AXISYMMETRIC ROCKET NOZZLE
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SUMMARY

A numerically fast algorithm has been developed to solve the viscous two-phase ¯ow in an axisymmetric rocket
nozzle. A Eulerian±Eulerian approach is employed in the computation to couple the gas±particle ¯ow.
Turbulence closure is achieved using a Baldwin±Lomax model. The numerical procedure employs a multistage
time-stepping Runge±Kutta scheme in conjunction with a ®nite volume method and is made computationally fast
for the axisymmetric nozzle. The present numerical scheme is applied to compute the ¯ow ®eld inside JPL and
AGARD nozzles. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nozzle ¯ow ®eld analysis constitutes an important area of research and development work in

aerospace engineering, since the performance of a launch vehicle depends on the propulsive power of

the nozzle. Optimum thermal insulation of the nozzle wall also demands accurate estimation of the

heat transfer rate to the nozzle wall. The aluminium oxide particles in the exhaust contribute to an

inef®ciency in the expansion process in the propulsive nozzle. This inef®ciency is attributed to

velocity and thermal lag between the gas and particles. It is necessary to know the behaviour of the

two-phase ¯ow expanding through the nozzle in order to evaluate the motor performance.

Since the 1970s, numerical simulation of the gas±particle two-phase nozzle has been extensively

studied with the development of numerical schemes. Chang1 has solved the unsteady two-¯uid

equations in conservation form using MacCormack's scheme to predict the gas and particle ®elds in

an axisymmetric convergent±divergent nozzle. Crowe2 provides a review of numerical models for

dilute gas±particle ¯ows. The main advantage of the two ¯uid model is that the numerical procedures

already established for single-phase ¯ow can be used for two-phase ¯ow. However, the major

drawbacks of this scheme are numerical diffusion of the particle phase and higher computer storage

and computer time requirements for multisize particles. A numerical study of the gas±particle ¯ow in

a solid motor nozzle has been made by Hwang and Chang3 using MacCormack's explicit scheme in
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conjunction with a trajectory model. Nishida and Ishimaru4 have obtained the numerical simulation

of gas±solid two-phase non-equilibrium nozzle ¯ows using MacCormack's scheme with TVD (total

variation diminishing). This numerical scheme needs extra computer time to compute explicit

characteristic ¯ux difference and Jacobian terms.

The objective of the present work is to develop a fast numerical algorithm to solve the two-phase

viscous ¯ow in an axisymmetric convergent±divergent nozzle, employing a simple structured grid

arrangement. A time-dependent numerical scheme in conjunction with a ®nite volume discretization

is developed for solution of the two-phase viscous ¯ow in the axisymmetric nozzle. An algebraic

turbulence model5 is used to compute the eddy viscosity. A Eulerian±Eulerian approach with

appropriate exchange terms for gas±particle interaction is used for formulation of the equations.

Since the number of equations is increased as compared with inviscid ¯ow, the numerical simulation

demands a considerable amount of computer CPU time to obtain a converged solution. A reduction in

CPU time is achieved by using a special structured grid arrangement in the numerical discretization.

The fast numerical algorithm has been tested and validated on the well-documented JPL and AGARD

nozzles in order to demonstrate the performance and versatility of the code. The ideas contained in

the proposed fast numerical algorithm can easily be extended to analyse the performance of an air

breathing rocket nozzle where the ¯uid dynamics equations are coupled with a two-phase, two-

equation turbulence model and ®nite rate chemistry.

2. ANALYSIS

The governing equations for gas ¯ow are the time-dependent axisymmetric compressible Navier±

Stokes equations in weak conservation form. For two-phase ¯ow the governing equations are written

in the Eulerian±Eulerian formulation
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The viscous ¯uxes R and S and the source term H are written as
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where s represents the stress vector and q the heat ¯ux vector, which are given by the constitutive

equations for a Newtonian ¯uid:
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Where Pr and Prt, the laminar and turbulent Prandtl numbers, are assumed to take constant values of

0�72 and 0�9 respectively. The coef®cient of molecular viscosity is calculated according to

Sutherland's law. The pressure p can be obtained from the equation of state of a perfect gas:

p � r�gÿ 1��eÿ 0�5�u2 � v2��: �2�

3. TURBULENCE MODEL

In the present investigation a two-layer algebraic model5 has been used for turbulence closure. This

model, which utilizes the vorticity distribution to determine the scale lengths, has been used

previously and is reputed to yield acceptable engineering solutions.6

In the inner region the eddy viscosity is given by

�mt�i � �0�4D1L�rjoj; �3�
where o is the vorticity function, L is the normal distance to the nozzle wall and D1 is Van Driest's

damping factor:

D1 � 1ÿ exp ÿ rwjojw
mw

� �0�5
L
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In the outer region,

�mt�o � 0�0168 �1�6�FwFKIF: �5�
The coef®cient Fw is calculated as the minimum of the following two values:

(i) LmaxFmax; �ii� 0�25Lmax max��u2 � v2��0�5=Fmax.

The scale length Lmax is the maximum value of L when the function F �� LD1joj� attains its

maximum Fmax. The Klebanoff intermittency correction factor is given by

FKIF � 1� 5�5 0�3 L
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The effective viscosity is then given by

mt � min�mi; mo�: �7�

4. GAS±PARTICLE INTERACTIONS

The coupling between gas and particle phases is made through the exchange of mass, momentum and

energy at the interface. In the present analysis the burning of particles is neglected and hence the

mass exchange is zero. The terms A and B represent the momentum exchange and C represents the

energy exchange. The coupling between phases is included through the source terms A, B and C in the

gas phase conservation equations and ÿA;ÿB and ÿC in the particle phase conservation equations.

The force exerted on a single particle moving through a gas is given as7

FP � 6prP fD�uÿ uP�; �8�
so that for N particles in a unit volume the effective drag force is

A � N6prP fDm�uÿ uP�; �9�
B � N6prP fDm�vÿ vP�; �10�

where fD is the ratio of the drag coef®cient CD to the Stokes drag CD0 � 24=ReP and is given by8

fD � 1� 0�33Re0�65
P : �11�

Where the Reynolds number ReP based on the relative velocity between gas and particle phases is

ReP � 2jDqPjrPr=m; �12�
with

jDqPj � ��uÿ uP�2 � �vÿ vP�2�0�5: �13�
The heat transferred from gas to particle phase per unit volume is given as1

QP � N2prPlNu�T ÿ TP�; �14�
where l is the thermal conductivity of the gas and Nu, the Nusselt number, is written as1

Nu � 2�0� 0�459Re0�55
P Pr0�33: �15�

The gas±particle energy term is given by

C � uPA� vPB� QP; �16�
where the ®rst two terms on the right-hand side represent the energy exchange due to momentum

transfer.

5. BOUNDARY CONDITIONS

Four types of boundary conditions are required for the computation of the ¯ow ®eld, i.e. wall, in¯ow,

out¯ow and symmetry conditions. They are prescribed as follows.

On the impermeable wall, no-slip conditions are speci®ed along with an adiabatic wall for both gas

and particle phases.

A the subsonic in¯ow the stagnation pressure and temperature are speci®ed. The axial velocity u is

extrapolated. The radial velocity v is calculated from the inlet ¯ow angle. Other variables are

calculated assuming 1% lag and the particle density using the speci®c loading f.
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For the supersonic out¯ow case all quantities are linearly extrapolated at the out¯ow from the

vector of conserved variables W as

Wnx; j � 2Wnxÿ1; j ÿWnxÿ2; j; �17�
where the subscript nx represents the last grid point on the boundary.

On the centreline of the axisymmetric nozzle the normal velocities of gas and particle phases and

the gradients in the normal direction of all other variables are speci®ed as zero.

6. STRUCTURED GRID

A structured ®nite volume grid system consisting of quadrilateral cells is generated using a simple

algebraic relation in conjunction with the given nozzle geometry. The nozzle centreline is divided

judiciously into a number of non-uniformly spaced grid points, taking into consideration the local

¯ow conditions. The normal grid points are generated perpendicular to the nozzle axis. In order to

insure a proper resolution of the boundary layer in the vicinity of the nozzle wall, the normal

direction grid points are exponentially stretched using the relation

ri; j � Rn
exp�ÿbj=nr� ÿ 1

exp�b� ÿ 1
; �18�

where Rn is the local radius of the nozzle at station i and b is a stretching factor. The values of i and j

vary from 1 to nx and from 1 to nr respectively. It is important to mention here that the structured grid

arrangement is well suited for the algebraic turbulence model.

7. NUMERICAL SCHEME

To facilitate the ®nite volume spatial discretization in the computation method, the equations of

motion of the ¯uid can be written in the integral form

@
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where O is the computational domain and G is the boundary of the domain. The contour integration

around the boundary of the cell is taken in the anticlockwise sense.

The computational domain is divided into a ®nite number of non-overlapping quadrilateral cells.

Figure 1 depicts a typical cell which has four edges (1, 2, 3, 4) and four vertices (A;B;C;D). The

conservative variables within the computational cell are represented by their average values at the

cell centre P. When the integral governing equations (19) are applied separately to each cell in the

domain, we obtain a set of coupled ordinary differential equations of the form

Aij

@Wi; j

@t
�Q�Wi; j� ÿ V�Wi; j� ÿ Ai; jHi; j � 0; �20�

where Q�Wi; j� and V�Wi; j� are the inviscid and viscous ¯uxes respectively.

7.1. Inviscid terms

The convective ¯uxes are calculated at the centre, resulting in cell-centre ¯ux balances. The

contour integration of the inviscid ¯ux vector is approximated as

Q�Wi; j� �
P4
s�1

�FsDrs ÿGsDxs�: �21�
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The summation is done over the four edges of the cell as depicted in Figure 1 and can be simpli®ed as

Q�Wi; j� � FABDrAB � FBCDrBC � FCDDrCD � FDADrDA ÿGBCDxBC ÿGDADxDA; �22�

where DxBC � XB ÿ XC, DrAB � rA ÿ rB, etc. are incremental distances. The terms DxAB and DxCD

are zero, because the grid lines are perpendicular to the axis. Cell-edge values of the inviscid ¯ux

terms are approximated by the average of two adjacent cell-centre values, e.g.

FAB � 0�5�Fi; j � Fi�1; j�:

7.2. Viscous terms

The viscous terms are de®ned at the centre of the cell. The above procedure is repeated to

approximate the contour integration of the viscous ¯ux vector as

V�Wi; j� �
P4
s�1

�RsDrs ÿ SsDxs�:

The inclusion of diffusion transport requires a choice of the locations at which the diffusive ¯uxes are

evaluated and the volume over which their derivatives should be integrated. The derivatives @f =@x
and @f =@r at the cell vertices �A;B;C;D� can be determined by considering auxiliary cells

surrounding each side as depicted in Figure 1, where f stands for any of the ¯ow variables u; v or T.

The viscous ¯ux vectors R and S are approximated in such a way as to preserve cell conservation and

Figure 1. Computational cell
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maintain algorithm simplicity. The derivatives of f at the vertices of the cell are evaluated by discrete

application of the divergence theorem9 to the auxiliary cell as

A0AB
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where A0 is the area of the secondary cell. In a similar way the derivative of f in the other co-ordinate

direction can be written as
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The terms DxAB, DxCD, DxPN and DxPS again become zero, because the grid lines are again

perpendicular to the axis.

On suf®ciently smooth grids the above ®nite volume discretization is second-order-accurate.

7.3. Arti®cial dissipation

In cell-centre spatial discretization schemes, such as the one described above which is non-

dissipative, where numerical errors (truncation, round-off, etc.) are not damped in time, oscillations

may be present in the steady state solution. In order to eliminate these oscillations, arti®cial

dissipative terms are added to (20), which now becomes

�rcAi; j

dWi; j

dt
� ÿ�Q�Wi; j� ÿ V�Wi; j� ÿ D�Wi; j�� � Ai; jH�Wi; j�: �25�

The approach of Jameson et al.10 is adopted to construct the dissipative function Di; j consisting of a

blend of second and fourth differences of the vector of conserved variables Wi; j. Fourth differences

are added everywhere in the ¯ow domain where the solution is smooth, but are `switched off' in the

region of shock waves. A term involving second differences is then `switched on' to damp

oscillations near shock waves. This switching is achieved by means of a shock wave sensor based on

the local second differences of pressure. Since the computational domain is structured, the cell

centres are de®ned by the two indices �i; j� in these co-ordinate directions. The dissipation terms are

written in terms of differences of cell-edge values as

Di; j � �dAB ÿ dCD � dBC ÿ dDA�=DAi; j; �26�
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where DAi; j is the local cell-centre time step. The cell-edge components of the arti®cial dissipation

are composed of ®rst and third differences of the dependent variables, e.g.

dAB � �d�2�AB ÿ d
�4�
AB�

Dti; j

2DAi; j

� Dti�1; j

2DAi�1; j

 !
; �27�

with

d
�2�
AB � E�2�2 �Wi�1; j ÿWi; j�; d

�4�
AB � E�4�2 �Wi�2; j ÿ 3Wi�1; j � 3Wi; j ÿWiÿ1; j�:

The adaptive coef®cients

E�2�2 � k�2�max�ni�1; j; ni; j�; E�4�2 � max�0; k�4� ÿ E�2�2 � �28�
are switched on or off by use of the shock wave sensor n, with

ni; j �
pi�1; j ÿ 2pi; j � piÿ1; j

pi�1; j � 2pi; j � piÿ1; j

�����
�����; �29�

where k�2� and k�4� are constants, taken equal to 1�0 and 0�03125 respectively in the above

calculations. The blend of second and fourth differences provides third-order background dissipation

in smooth regions of the ¯ow and ®rst-order dissipation at shock waves.

7.4. Time-marching scheme

The spatial discretization described above reduces the governing ¯ow equations to semidiscrete

ordinary differential equations. The integration is performed using an ef®cient multistage scheme.10

Since time accuracy is not important for a steady state solution, such schemes are selected only for

their properties of stability and damping. The following three-stage, time-stepping method is adopted

for the present work (neglecting for clarity the subscripts i and j).

W�0� �Wn;

W�1� �W�0� ÿ �0�6Dt=DA��R�0� ÿ D�0��;
W�2� �W�0� ÿ �0�6Dt=DA��R�1� ÿ D�0�;
W�3� �W�0� ÿ �1�0Dt=DA��R�2� ÿ D�0�;

Wn�1 �W�3�;

�30�

where n is the current time level, n� 1 is the new time level and R is the sum of inviscid and viscous

¯uxes. The temporal accuracy of (30) is third-order.10 In order to minimize the computational time,

the expensive evaluation of the dissipation function D is carried out only at the ®rst intermediate

stage (0) and then frozen for the subsequent stages. This is known to modify the stability criterion of

the scheme, but the steady state accuracy and convergence characteristics are preserved. The

numerical scheme is stable for a Courant number42. Local time steps are used to accelerate

convergence to a steady state solution, advancing the time step at each grid point by the maximum

permissible amount allowed by the local CFL condition.

8. RESULTS AND DISCUSSION

The fast numerical algorithm developed above is applied to solve viscous two-phase ¯ow. The

inviscid ¯ow results are taken as initial guess for the viscous ¯ow. The reduction of CPU time for
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evaluation of the ¯ux terms can be seen by examining equations (22) and (24). The present algorithm

takes about 25% less CPU time=cell=iteration=time step for computation of the inviscid terms. In the

computation of the radial direction ¯ux quantities the computer code saves about 50% CPU time for

each cell=iteration=time step. All computations are performed on a Landmark I860-based workstation

using double-precision arithmetic and an optimum compiler. Numerical computations are presented

here for the well-documented axisymmetric JPL and AGARD nozzles. Grid independence tests are

carried out taking into consideration the number of grid points in the axial and radial directions and

the stretching factor to control the grid density near the nozzle wall. The grid size used for the JPL

nozzle gives a relative difference or about �2% in the nozzle wall and centreline pressure

distribution, while for the AGARD nozzle the error in the computation of the speci®c impulse is

about 7 0�4%. The minimum and maximum values of Dx and Dr in the convergent and divergent

regions of the nozzle are given in Table I.

8.1. JPL nozzle (single-phase)

First of all, single-phase calculations were carried out. Figure 2(a) shows the JPL nozzle

con®guration. As shown in Figure 2(b), the computational domain of the nozzle is divided into a

structured grid of 42632 nodes. The chamber pressure and temperature are given in Table II. The

calculated pressure ratio �p=P0� variations along the wall and centreline are shown in Figure 3 along

with the JPL test data.11 The agreement between the results of this study and the experimental data is

very good in the entire ¯ow region. This shows that good resolution of the boundary ¯ow variables is

obtained using the simple structured grid arrangement.

8.2. JPL nozzle (two-phase)

The algorithm is now applied to a viscous two-phase ¯ow problem. The chamber conditions are the

same as in the single-phase ¯ow case. The density, speci®c heat, particle size and particle mass

loading are given in Table II. The inviscid ¯ow results are taken as starting solution for the two-phase

¯ow. Figures 4±7 show the Mach and particle contours for 3 and 5 mm radius aluminium oxide

particles. It can be observed from the ®gures that as the particle size increases, the particle shift from

the nozzle wall in the divergent area of the nozzle. The particle number density contours show

interesting ¯ow features of the two-phase ¯ow. The maximum particle density is found on the wall

upstream of the throat. A sharp change in particle density is found near the upper wall downstream of

the throat, where the particle density drastically decreases to a small value. Figure 8 shows the

centreline variation of Mach number and gas temperature. It can be seen from the ®gures that as the

particle size increases, the Mach number and gas temperature decrease along the centreline of the

nozzle.

Table I. Nozzle data

JPL nozzle AGARD nozzle

�Dx�min (m) 0�0017 0�0011
�Dx�max (m) 0�005 0�0064
�Dr�min (m) 0�0008 0�0002
�Dr�max (m) 0�0028 0�0024

VISCOUS FLOW IN A ROCKET NOZZLE 509

# 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids, 26: 501±517 (1998)



Figure 2. (a) Schematic sketch of JPL nozzle. (b) Grid for JPL nozzle

Table II. Two-phase ¯ow input data for JPL nozzle

Gas phase Particle phase

P0 � 1�0342 MPa CPP� 1380�0 J kg71 K71

T0� 555�0 K �p� 4004�62 kg m73

g� 1�4 rp� 3 and 5mm
CP� 1070�0 J kg71 K71 f� 0�3
Pr� 0�74

Figure 3(a). Wall pressure distribution for JPL nozzle ¯ow
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Figure 4. Iso-Mach contours for two-phase JPL nozzle ¯ow �rP � 3mm)

Figure 3(b). Centreline pressure distribution for JPL nozzle ¯ow
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8.3. AGARD-nozzle

The propellant composition, operating conditions and nozzle con®guration are as follows for the

AGARD nozzle: ammonium perchlorate 68%, aluminium 20%, binder 12%, average chamber

pressure 7�3 MPa, throat radius 41 mm, area ratio 60, initial angle 29�8�, exit angle 15�. Using these

inputs, we calculated the following: stagnation temperature 3618�0 K, speci®c heat ratio 1�249,

Prandtl number 0�3368, gas molecular weight 20�42, mass fraction 0�315. Figure 9 shows the grid

Figure 5. Iso-Mach contours for two-phase JPL nozzle ¯ow (rP � 5mm)

Figure 6. Particle number density contours �rP � 3mm)
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Figure 7. Particle number density contours (rP � 5mm)

Figure 8(a). Variation of Mach number along centreline
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distribution inside the AGARD nozzle (90660). Figure 10 displays the vector plot for a particle

radius of 1 mm. Figure 11 shows the Mach and particle contours. The particles are separated from the

nozzle wall in the downstream region of the throat and create a particle-free zone. The speci®c

impulse of the AGARD nozzle for 1 mm radius particles is calculated as 295�6 s, which is close to the

measured value of 296�7 s. The error in the speci®c impulse prediction is 7 0�4%. This shows that a

prediction accuracy of less than 1.0% can be achieved by the numerical simulation. It is worth

mentioning here that the speci®c impulse of the propulsive nozzle is an important requirement for the

mission simulation of a launch vehicle.

Figure 9. Grid for AGARD nozzle

Figure 8(b). Variation of gas temperature along centreline

514 R. C. MEHTA AND T. JAYACHANDRAN

Int. J. Numer. Meth. Fluids, 26: 501±517 (1998) # 1998 John Wiley & Sons, Ltd.



9. CONCLUSIONS

A computationally fast algorithm is developed to solve compressible unsteady viscous two-phase

¯ow in the axisymmetric nozzle. A structured grid arrangement is employed for numerical

discretization. The grid is normal to the axial direction, which reduces the number of terms in the

summation of inviscid and viscous ¯uxes. The grid is very convenient for the algebraic turbulence

Figure 10. Vector plot �rP� 1 mm)

Figure 11(a). Mach contour (rP � 1 mm)
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model. A multistage, explicit, time-marching scheme is used to simulate numerically the ¯ow ®eld

inside the axisymmetric nozzle. The effects of particle size on the ¯ow ®eld are investigated for JPL

and AGARD nozzles.

APPENDIX: NOMENCLATURE

CP speci®c heat at constant pressure

CPP speci®c heat of particle phase

e speci®c energy

EP enthalpy of particle phase

fD drag

E;F;H ¯ux vectors

M Mach number

N particles in a unit volume

p static pressure

P0 stagnation pressure

Pr Prandtl number

q heat ¯ux

t time

T temperature

u; v velocity components

W conservative vector

x; r polar co-ordinates

Figure 11(b). Particle density contours (rP� 1mm)
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Greek letters

g ratio of speci®c heats

m molecular viscosity

r density

s stress

f particle speci®c loading

o vorticity

Subscripts

p particle

0 stagnation
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